带你彻底理解程序为什么会超时

xwbar的头像
2025-10-26 08:45:51
/
福利站

一些同学可能对计算机运行的速度没有概念

可能就是感觉计算机运行速度应该会很快

那么我们在做算法题目的时候为什么会超时呢?

我们的计算机究竟1s可以计算多少次呢?

接下来我们来探讨一下这几个问题。

超时是怎么回事?

大家刷 leetcode 时候应该都遇到过知一种错误是超时

也就是说程序运行的时间超过了规定的时间,而 leetcode 并没说程序运行了多久超时,也没有说超时时间具体是多少

一般现在判题系统的超时时间就是 1s,其他OJ呢,例如 POJ 或者ZOJ 超时时间都基本上都是 1s

也就是用例数据输入后最多要1s内得到结果,leetcode 应该也是 1s 左右(leetcode 上可能每道题限制会有所不同)。

下文为了方便讲解,暂定超时时间就是 1s

接下来我们要知道我们的代码为什么会超时的

也就是如果我们写出了一个 O(n)的算法 ,我们其实可以估算出来 n 是多大的时候,我们算法的执行之间就会超过 1s

如果知道n的规模已经足够让 O(n) 的算法运行时间超过了 1s,此时我们就应该考虑 log(n)的解法

从硬件配置看计算机的性能

因为我们主要看计算机的运算速度,所以主要看 CPU 的配置

以我自己的 Macpro 为例 CPU配置:2.7 GHz Dual-Core Intel Core i5

也就是 2.7 GHz 奔腾双核,i5 处理器

这里在介绍一下 GHz 的概念

1Hz = 1/s

1Hz 就可以理解是 cpu 单位时间内完成了一次操作,我们称之为为赫兹

那么 1GHz 等于多少赫兹呢

1GHz(吉赫)= 1000MHz(兆赫)

1MHz(兆赫)= 1百万赫兹

所以 1GHz = 10亿Hz,表示 CPU 可以一秒运行 10 亿次,2.7GHz 就是 27 亿次

再加上双核所以就是理论上我的计算机 1s 可以运行 54 亿次

但是不要以为计算机的 cpu 1s 运行 54 亿运算都用到了我们自己写的程序上

这里面水分很多的,首先不是 CPU 每次运行都能实现一次运算,有时候大概运行十几次才能完成一次运算。

同时cpu也要执行计算机的各种进程任务等等,我们的程序仅仅是其中的一个进程而已

所以我们的程序在计算机上究竟1s真正能执行多少次操作呢?

做个试验测一下计算机的运行速度

我们来测一下计算机的运行速度究竟是多少

这是我们需要的头文件

// 头文件

#include

#include

#include

using namespace std;

using namespace chrono;

我们实现三个函数,时间复杂度分别是 O(n) , O(n2), O(nlogn)

// O(n)

void function1(long long n) {

long long k = 0;

for (long long i = 0; i < n; i++) {

k++;

}

}

// O(n^2)

void function2(long long n) {

long long k = 0;

for (long long i = 0; i < n; i++) {

for (long j = 0; j < n; j++) {

k++;

}

}

}

// O(nlogn)

void function3(long long n) {

long long k = 0;

for (long long i = 0; i < n; i++) {

for (long long j = 1; j < n; j = j*2) { // 注意这里j=1

k++;

}

}

}

那么接下来我们来看一下这三个函数随着 n 的规模变化,耗时会产生多大的变化

这里呢 假如我们先测 function1 ,就把 function2 和 function3 注释掉

int main() {

long long n; // 数据规模

while (1) {

cout << "输入n:";

cin >> n;

milliseconds start_time = duration_cast(

system_clock::now().time_since_epoch()

);

function1(n);

// function2(n);

// function3(n);

milliseconds end_time = duration_cast(

system_clock::now().time_since_epoch()

);

cout << "耗时:" << milliseconds(end_time).count() - milliseconds(start_time).count()

<<" ms"<< endl;

}

}

我们来看一下运行的效果。

O(n) 的算法,1s内大概计算机可以运行 5*(10^8)次计算

接下来我们来推测一下 O(n2) 的算法,1s 可以 运行多少次计算呢, 应该是对 5*(10^8) 开根号 的次数

看一下实验数据

O(n2) 的算法,1s内大概计算机可以运行 22500 次计算, 验证了刚刚的推测

在推测一下 O(nlogn) 的话, 1s 可以运行多少次呢,理论上应该是比 O(n) 少一个数量级

因为 logn 的复杂度 其实是很快。

再看一下实验数据

O(nlogn) 的算法,1s内大概计算机可以运行 2*(10^7) 次计算,符合我们的预期

完整的测试代码,可以在这里获取

https://github.com/youngyangyang04/algorithm_interview_course/blob/master/chapter_two/section_2.cpp

总结

这是在我自己的计算机上测出来的数据,不能说是十分精确,数量级是差不多的,大家可以用来参考一下

至于 O(logn) 和 O(n3) 等等这些时间复杂度在 1s 内可以处理的多大的数据规模,同学们可以自己想一想写代码去测一下了

通过这一篇文章希望大家对数据规模和超时错误 有一个初步的认识!

守望先锋怎么练枪?(守望先锋练枪多久出效果)
女巫来了steam售价 女巫来了steam售价 → 女巫来了价格